Electronic Interpretation of the Reaction of Olefins with Organic Per-acids By DANIEL SWERN Numerous investigators have shown that, under similar experimental conditions, the rate of reaction of olefins with organic per-acids is dependent on the structure of the unsaturated compounds. This is illustrated in Tables I and II, in which specific reaction rates are given for the reaction of various olefins with peracetic and perbenzoic acids. In the majority of published papers, however, kinetic studies have not been reported, and the oxidation reactions have merely been described as slow or rapid (sometimes violent), or not taking place. No explanation for this difference in reaction rates has been proposed by earlier workers, although certain empirical rules have been established. Thus, the reaction is either slowed down considerably or does not take place when carboxyl, carboalkoxy, aldehydo or keto groups are either attached to or are in close proximity to the double bond,2 such as is the case in cinnamic acid and its esters,2,3 maleic, fumaric and crotonic acids and their esters, and α,β -pentenoic and hexenoic acids.3,4 Aliphatic mono-olefins with terminal double bonds also react slowly,5a,6 whereas sub- - (1) One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, United States Department of Agriculture. Article not copyrighted. - (2) (a) Bodendorf, Arch. Pharm., 268, 491 (1930); (b) Prileschajew, J. Russ. Phys.-Chem. Soc., 44, 613 (1912). - (3) Böeseken and de Graaff, Rec. trav. chim., 41, 199 (1922); Böeseken, ibid., 45, 838 (1926). - (4) Braun, This Journal, 51, 228 (1929); 52, 3185, 3188 (1930). (5) (a) Stuurman, Proc. Acad. Sci. Amsterdam, 38, 450 (1935); - (b) Thesis, Delft (1936). (6) (a) Swern, Billen and Scanlan, THIS JOURNAL, 68, 1504 (1946); (b) Findley Swern and Scanlan, ibid., 67, 412 (1945). stitution of the hydrogen atoms attached to the double bond by alkyl groups increases the reaction rate considerably, 55,7 and phenyl groups usually have only a mildly accelerating effect.5a,8 Also, in the oxidation of isoprene, the double bond to which the methyl group is attached is attacked first^{9,10}; in the oxidation of 2-methyl-2,3-butadiene (a substituted allene), geraniol, linalyl acetate and citral, the double bond to which both methyl groups are attached is attacked first2b,10; and in the oxidation of methyl 2,4-hexadienoate the double bond farther from the carbomethoxy group is attacked first.11 On the basis of stereochemical considerations alone, it is surprising that olefins with terminal double bonds react much more slowly with peracids than olefins which contain alkyl groups directly attached to the double bond. In fact, ethylene, which contains no groups which might prevent ready access of the per-acid to the double bond, would be expected to react rapidly with peracids, yet just the reverse is true. The majority of the specific reaction rates shown in Tables I and II, as well as the empirical rules and preferential reactions discussed above, fit into a logical pattern if one applies to them the electronic interpretations - (7) Böeseken and Stuurman, Proc. Acad. Sci. Amsterdam, 39, 2 (1936); Rec. trav. chim., 56, 1034 (1937); Böeseken and Hanegraaff, ibid., 61, 69 (1942). - (8) (a) Böeseken and Blumberger, Rec. trav. chim., 44, 90 (1925); (b) Böeseken and Elsen, ibid., 48, 363 (1929). - (9) Pummerer and Reindel, Ber., 66, 335 (1933). - (10) Böeseken, van Asperen, Cauchy, Maters and Ottenhoff, Rec. trav. chim., 54, 657 (1935). - (11) Heinanen, Suomen Kennistilehti, 11B, 2 (1938); C. A., 32, 2003 6 TABLE I SPECIFIC REACTION RATES (k) FOR THE REACTION OF ALIPHATIC AND ALICYCLIC OLEFINS WITH PERACETIC ACID IN | | ACETIC ACID SOLUTION | | | |---|--|--------|--------------------| | Olefin | Structural formula | t, °C. | $k \times 10^{14}$ | | Ethylene ^{5a} | H ₂ C=CH ₂ | 25.8 | 0.19 | | Propylene ^{5a} | H ₂ C=CH-CH ₃ | 25.8 | 4.2 | | 1-Pentene ^{5a} | $H_2C=CH-(CH_2)_2-CH_3$ | 25.8 | 4.3 | | 1-Octene ^{6a} | $H_2C = CH - (CH_2)_5 - CH_3$ | 25 | 5.0 | | 1-Decene ^{6a} | $H_2C = CH - (CH_2)_7 - CH_3$ | 25 | 4.7 | | Methyl hendecenoate ^{6b} | $H_2C=CH-(CH_2)_8-COOCH_3$ | 25 | 4.1 | | Oleic acid 16 | CH_3 — $(CH_2)_7$ — CH = CH — $(CH_2)_7$ — $COOH$ (cis) | 18 | 36 | | | | 25.8 | 67 (estd.) | | Elaidic acid ¹⁶ | CH_3 — $(CH_2)_7$ — CH — CH — $(CH_2)_7$ — $COOH$ (trans) | 18 | 33 | | | | 25.8 | 59 (estd.) | | Ricinoleic acid16 | CH_3 — $(CH_2)_5$ — $CH(OH)$ — CH_3 — CH = CH — $(CH_2)_7$ — $COOH$ (cis) | 18 | 26 | | Accessor and | | 25.8 | 46 (estd.) | | Ricinelaidic acid16 | CH_3 — $(CH_2)_5$ — $CH(OH)$ — CH_2 — CH = CH — $(CH_2)_7$ — $COOH$ (trans) | 18 | 16 | | Richicialdic acid | | 25.8 | 28 (estd.) | | | CH ₃ | | | | | | 05.0 | | | 2-Methyl-1-propene ^{5a} | $H_2C = C - CH_3$ | 25.8 | 92 | | 2-Butene ^{5a} | CH,—CH=CH—CH, | 25.8 | 93 | | 2-Pentene ^{5a} | CH ₄ —CH=CH-CH ₂ —CH ₃ | 25.8 | 95 | | 2-Hexene ^{5b} | $CH_{2}-CH=CH-(CH_{2})_{2}-CH_{2}$ | 25.8 | 99 | | 3-Hexene⁵b | CH ₃ —CH ₂ —CH=CH—CH ₂ —CH ₃ | 25.8 | 129 | | 3-Heptene ⁷ | CH_3 — CH_2 — CH — CH — $(CH_2)_2$ — CH_3 | 25.8 | 110 | | 4-Nonene ⁷ | CH_3 — $(CH_2)_2$ — CH = CH — $(CH_2)_2$ — CH_2 | 25.8 | 105 | | | CH₂ | | | | | 1 3- 3- | 25.8 | 1240 | | 2-Methyl-2-butene5a | CH ₃ —C=CH—CH ₃ | 20.0 | 1210 | | G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | H ₂ C—CH | 25.8 | 20.4 | | Cyclobutene ^{5b} | H ₂ C—CH | | | | | H ₂ C—CH _{\(\sigma\)} | | | | Cyclopentene ^{5a} | CH CH | 25.8 | 195 | | Оущорошини | H ₂ C—CH ₂ | | | | | CH ₂ —CH | 25.8 | 129 | | Cyclohexene ^{5a} | CH ₂ CH | 40.0 | 120 | | | CH ₂ —CH ₂ | | | | A | CH ₂ (CH ₂) ₂ —CH | 25.8 | 175 | | Cycloheptene ⁷ | $(CH_2)_2$ | | | | 1-Methylcyclopentene5a | H_2C — C — CH_3 | 25.8 | 2220 | | 1-Macinyley cropenteric | | | | | | н⁴¢ сн | | | | | On the second se | | | | | CH ₂ | | | ^a Time in minutes, concentration in moles per liter. of organic reactions developed by Lewis¹² and Lucas, ¹³ and, in recent years, by numerous English workers, notably Ingold, Lapworth and Robinson ¹⁴ Olefins are nucleophilic substances, and alterations in structure which increase the electron density of the ethylenic system, and thereby increase its nucleophilic properties, result in an increase in the rate of reaction of the olefin with elec- trophilic substances. This is a fundamental postulate of the English school. Thus, in the reaction of olefins with bromine, it has been observed that the successive substitution of electron-releasing groups, such as methyl, for the hydrogen atoms attached to the double bond causes an increase in reaction velocity.14 This is explained on the assumption that the electron-releasing groups, by increasing the electron density of the ethylenic system, increase its nucleophilic properties and thereby cause a more rapid attack by the electrophilic (electron-poor) bromine ion (:Br)+.14 Conversely, the introduction of electron-attracting groups, such as carboxyl, causes a reduction in reaction rate because of the effect of such groups in diminishing the nucleophilic properties of the ⁽¹²⁾ Lewis, "Valence and Structure of Atoms and Molecules," (The Chemical Catalog Co.), Reinhold Publ. Corp., New York, N. Y., 1923. ⁽¹³⁾ Lucas, This Journal, 46, 2475 (1924); 47, 1459 (1925); 48, 1827 (1926); 51, 2718 (1929). ⁽¹⁴⁾ For an excellent discussion of the contributions of the English workers, and for previous literature, see Remick, "Electronic Interpretations of Organic Chemistry," John Wiley & Sons, Inc., N. Y., 1943, especially pp. 52, 55, 69, 117, 129, 187 and 416. Table II Specific Reaction Rates (k) for the Reaction of Olefins Containing Aromatic Groups with Peracetic Acid in Acetic Acid Solution and with Perbenzoic Acid in Chloroform or Carbon Tetrachloride Solution | ACETIC ACID SOLUTION AND W | ITH PERBENZOIC ACID IN CHLOROFORM OF | Perace | tic acid | Perben | zoic acid | |--------------------------------------|---|--------|-----------------------------|---|-------------------| | Olefin | Structural formula | ı, °C. | tic acid $k \times 10^{3a}$ | ı, °C. | $k \times 10^{3}$ | | Allylbenzene ^{5a,8a} | -CH ₂ CH=-CH ₂ | 25.8 | 1.9 | 25-30 | 6–15 | | Stilbene ^{6a,8a} | CH=CH-(lra vs) | 25.8 | 6.7 | 25-30 | 18 | | Isostilbene⁵a,8a | CH=CH-(cis) | 25.8 | 11.1 | 15–16 | 9 | | Styrene ^{5a,8a} | CH=CH ₂ | 25.8 | 11.2 | 25–30 | 35 | | 1-Phenyl-1-propene ^{5a,8a} | CH=CH-CH ₃ | 25.8 | 46 | 25–30 | 110-190 | | Indene ^{5a} | CH
CH ₂ | 25.8 | 47 | ••• | •••• | | 1,1-Diphenylethylene⁵® | C=CH ₂ | 25.8 | 48 | ••• | | | 1,4-Dihydronaphthalene ^{5a} | H H | 25.8 | 37 | ••• | , | | 1,2-Dihydronaphthalene ^{5a} | H H | 25.8 | 230 | • • • • · · · · · · · · · · · · · · · · | | | 1-Phenyl-3-butene ^{8a} | (CH ₂) ₂ —CH=CH ₂ | | · | 15–16 | 8–9 | | 1-Phenyl-2-butene ^{8a} | -CH ₂ -CH=CH-CH ₃ | •• | | 15–16 | 10 | | 1-Phenyl-1-butene ^{8a} | CH=CH-CH ₂ -CH ₃ | ••• | | 15-16 | 80 | | Eugenol ¹⁷ | HO—CH2—CH=CH2 | | • • • | 0 | 2.2 | | Isoeugenol ¹⁷ | осн, | •• | ••• | 0 | 127 | | Safrole ¹⁷ | OCH ₂ -CH ₂ -CH=CH ₂ | • • | | 0 | 1.3 | | Isosafrole ¹⁷ | CH ₂ O—CH=CH-CH ₃ | •• | | 0 | 148 | | | TABLE II (Concluded) | Perace | tic acid | Perbe | nzoic acid | |--------------------------------|----------------------|--------|--------------------|--------|--------------------| | Olefin | Structural formula | ı,°C. | $k \times 10^{1a}$ | ı, °C. | $k \times 10^{1a}$ | | Cinnamyl alcohol ^{2a} | CH=CH−CH₂OH | •• | • • • • | 20 | 202.5 | | Cinnamaldehyde ^{2a} | -СН=СН-СНО | | • • • | 20 | 4.7 | | 1-Phenyl-2-acetylethylene2a | —CH—CH—COCH₃ | | • • • | 20 | 2.5 | | Cinnamic acid ^{2a} | —CH=CH−CO₂H | | ••• | 20 | 0.13 | | Alkyl cinnamates24 | CH=CH−CO₂R | | . • • • | 20 | . 13 | ^a Time in minutes, concentration in moles per liter. double bond. These electron shifts are illustrated below. CH₃ → CH=CH₂ Increased nucleophilic properties · $$H_2C=CH_2 \longrightarrow C \bigcirc_{OH}^{\uparrow}$$ Decreased nucleophilic properties The concept that an increase or decrease in electron density of the ethylenic system results in an increase or decrease in the nucleophilic properties of the double bond may be employed to explain successfully the differences in reaction rates of the vast majority of olefins with per-acids. Although the actual structure of organic peracids, usually written as R—CO₃H, is not known, the peroxide oxygen must be loosely bound in the molecule, since it is given up so readily under a wide variety of reaction conditions. For the purpose of the subsequent discussion, it is sufficient to assume that in the per-acid molecule, the peroxide oxygen is electrophilic and is readily released from the per-acid in the presence of a nucleophilic group such as the double bond. The reaction of an olefin, such as propylene, with a per-acid may be represented in the following way $$CH_3 \longrightarrow CH = CH_2 + Per-acid \longrightarrow$$ $$CH_3 \longrightarrow CH - CH_2$$ The oxirane compound may or may not be the final product, depending upon its stability, the reaction conditions, the per-acid employed, etc. ^{6b} In the reaction of an olefin such as crotonic acid with a per-acid, the reaction proceeds slowly because the powerful electron-attracting properties of the carboxyl group reduce the nucleophilic properties of the double bond, and, therefore, the tendency for the peroxide oxygen to detach itself from the per-acid is diminished. This proposed electronic mechanism may be applied, without exception, to explain the differences in the reaction rates of the aliphatic olefins, shown in Table I. If the specific reaction rate of (15) The reactions of hydrogen peroxide and organic per-acids with sulfides to yield sulfoxides and sulfones and with amines to yield amine oxides also support the assumption that the peroxide oxygen in these oxidants is electrophilic. ethylene with peracetic acid is taken as the standard for comparison, $(k \times 10^3 = 0.19 \text{ at } 25.8^\circ)$ Table I), it will be seen that the substitution of one electron-releasing group (methyl, n-propyl, nhexyl, n-octyl) for one hydrogen atom increases the reaction rate about twenty-four times, from 0.19 to about 4.5. The substitution of two such groups (methyl-methyl, methyl-ethyl, methyl-npropyl, ethyl-ethyl, ethyl-n-propyl, n-propyl-nbutyl) for any two of the hydrogen atoms of ethylene increases the specific reaction rate about five hundred and forty times, from 0.19 to 92 to 129, with the majority of specific reaction rates falling between 92 and 99. The substitution of three electron-releasing groups increases the specific reaction rate about six thousand five hundred times from 0.19 to about 1240, and the substitution of four electron-releasing groups yields a compound, tetramethylethylene, whose specific reaction rate with peracetic acid at 25.8° is too high to be measured.7 This increase in reaction rate is a striking illustration of the influence of electronreleasing alkyl groups on nucleophilic activity. The octadecenoic acids16 shown in Table I (oleic, elaidic, ricinoleic and ricinelaidic acids) may be assumed to be ethylene with two of the hydrogen atoms replaced by alkyl groups, and, therefore, their specific reaction rates should be at least 92 at 25.8°. The specific reaction rates are considerably lower, however, and it must be assumed that, in oleic and elaidic acids, the field effect of the electron-attracting carboxyl group reduces the nucleophilic properties of the double bond, resulting in lower specific reaction rates. In ricinoleic and ricinelaidic acids, the electronattracting properties of the neighboring hydroxyl group, in addition to the field effect of the carboxyl group, reduce the nucleophilic properties of the double bond still further, and this is reflected in even lower specific reaction rates. Steric factors may account for the difference in specific reaction rates of the cis and trans isomers. In methyl hendecenoate (undecylenate), however, the field effect is only a minor factor, since the specific reaction rate of this compound is only slightly lower than that of the other terminally unsaturated compounds. The failure of maleic and fumaric acids and (16) Smit. Rec. tray. chim., 49, 686 (1930). marked increase in reaction rate. In 1,4-dihydronaphthalene, the phenyl group must be exerting an electron-attracting effect, since this compound has a much lower specific reaction rate with peracetic acid than 2-butene, its aliphatic structural analog. The phenyl group appears to act as an electron-attracting group when it is separated from the double bond by a methylene group (see also allylbenzene), and electron-releasing when it is directly attached to the ethylenic system. With the exception of crotonaldehyde^{2a} ($k \times$ $10^3 = 0.76$ at 20°), no data on specific reaction rates could be found for the reaction of perbenzoic acid with aliphatic olefins, for comparison with olefins containing aromatic groups. Since it was pointed out earlier, however, that the phenyl group in allylbenzene exerts an electron-attracting effect, it would be expected that the specific reaction rate of this compound with perbenzoic acid would be less than that of styrene, in which the phenyl group exerts an electron-releasing effect. In 1-phenyl-1-propene, the phenyl group is again exerting an electron-releasing effect, as manifested by the marked increase in specific reaction rate as compared with that of allylbenzene. Also, the marked increase in specific reaction rate of 1phenyl-1-propene as compared with that of styrene, is due to the presence of two electron-releasing groups in the molecule. In the case of the three isomeric phenylbutenes, it was pointed out by Böeseken and Blumberger^{8a} that the speed of oxidation increases as the double bond approaches the benzene ring, although no explanation was offered for this phenomenon. It would be expected that 1-phenyl-1-butene would have a greater specific reaction rate than its isomers, since this compound contains two electron-releasing groups, namely, a phenyl group directly attached to the ethylenic system and an alkyl group. In 1-phenyl-2-butene, the phenyl group is separated from the double bond by a methylene group and, as previously pointed out, a phenyl group in such a position exerts an electron-attracting effect which operates in opposition to the electron-releasing effects of the methylene and methyl groups (net effect = 1 + electron-releasing groups). In 1phenyl-3-butene the phenyl group is probably too far from the double bond to exert an appreciable effect, and the methyl group is the only group affecting the nucleophilic properties of the double bond (net effect = 1 electron-releasing group). On the basis of this reasoning, 1-phenyl-2-butene should and does have a slightly higher specific reaction rate than 1-phenyl-3-butene. The slow rates of reaction of 1-phenyl-2-acetylethylene, ^{2a} safrole, ^{8b,17} and eugenol, ^{2a,17} and the more rapid rates of reaction of anethole, ^{8b} 1,3-diphenylpropene, ^{8b} isosafrole, ^{8b,17} and isoeugenol^{2a,17} with per-acids, follow from the earlier discussion in this paper. Although it has been reported that cinnamic acid and methyl cinnamate do not react with perbenzoic acid,26,3 they do react,2a but at such low rates that for all practical purposes no reaction occurs. In these compounds the phenyl group should exert an electron-releasing effect which counteracts, in part, the strong electron-attracting effect of the carboxyl or carbomethoxy group, resulting in a situation analogous to that of crotonic acid and related compounds, in which an alkyl group is present instead of a phenyl group.4 Cinnamyl alcohol has been reported to react with perbenzoic acid at a normal rate,2a and probably does so because the electron-releasing phenyl group is able to compensate for the electron-attracting effect of the hydroxyl group. It should be pointed out, however, that the rate of reaction of olefins with perbenzoic acid is often markedly affected by the age and method of preparation of the per-acid, 8b as well as by the solvent employed.17 For these reasons, conclusions drawn from perbenzoic acid oxidations must often be accepted with reservation. The reaction of olefins with other organic peracids, such as performic, percamphoric, has not been studied extensively, and specific reaction rates are not available. Although percamphoric, perfuroic and monoperphthalic acids would not be expected to differ fundamentally from perbenzoic acid in their reactivity with variously substituted olefins, and the limited amount of experimental evidence available is consistent with this conclusion, performic acid gives results which differ substantially from those obtained with peracetic acid. Thus, performic acid appears to react rapidly with oleic acid and related compounds a well as with compounds which contain a terminal double bond, provided that the reactions are carried out in a homogeneous solution. By the application of the principles discussed here, it is possible to predict with a considerable degree of accuracy, especially in the aliphatic series, the specific reaction rate of the peracetic acid oxidation of an olefin of known structure, and suitable reaction conditions readily can be devised. In addition, valuable information regarding the structure of an olefin may be obtained by determining its specific reaction rate with peracetic acid. Also, a determination of the specific reaction rate of a mixture of olefins, such as those obtained from dehydration, dehalogenation, dehydrohalogenation and olefin polymerization reactions, 22 may yield much information regarding the positions of the double bonds. Acknowledgment.—The author wishes to express his appreciation to Thomas W. Findley, (20) Böhme, Ber., 70, 379 (1937). ⁽¹⁷⁾ Meerwein, J. prakt. Chem., 113, 9 (1926). ⁽¹⁸⁾ Milas and Cliff, This Journal, 55, 352 (1933). ⁽¹⁹⁾ Milas and McAlevy, ibid., 56, 1219 (1934). ⁽²¹⁾ Swern, Billen, Findley and Scanlan, This Journal, 67, 1786 (1945). ⁽²²⁾ Chem. Eng. News, 24, 772 (1946); Saffer and Johnson, paper delivered at the meeting of the American Chemical Society, Chicago. Illinois, September, 1946. John T. Scanlan and Waldo C. Ault, for their constructive criticism during the preparation of this article. ## Summary An electronic interpretation of the reaction of olefins with organic per-acids is proposed. This is based on the assumption that the peroxide oxygen in per-acids is electrophilic, and is readily released in the presence of a nucleophilic group, such as the double bond. When electron-releasing groups are attached to, or are in close proximity to, the double bond, the reaction rate is increased because of the increased electron density of the ethylenic system, which results in an increase in the nucleophilic properties of the double bond; when electron-attracting groups are present, the reaction rate is decreased because of a decrease in the nucleophilic properties of the double bond. The preferential oxidation of one of the double bonds in certain di-unsaturated compounds, such as isoprene, 2-methyl-2,3-butadiene, geraniol, linalyl acetate and citral is explained on the basis of an increase in the nucleophilic properties of one of the double bonds as a result of electron-releasing substituents. In methyl 2,4-hexadienoate, the 4,5-double bond, which is preferentially oxidized, has increased nucleophilic properties because of the electron-releasing methyl group attached to it, whereas the 2,3-double bond has decreased nucleophilic properties because of the electron-attracting carbomethoxy group. Although only a small amount of experimental work is available on the use of performic acid as an oxidizing agent, it appears to react rapidly with olefins which contain one as well as two electron-releasing groups attached to the ethylenic system, whereas a slow reaction would be expected with those olefins which contain only one such group.